scholarly journals A new finite point generation scheme using metric specifications

Author(s):  
C. K. Lee
Keyword(s):  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaomin Liu ◽  
Muhammad Abbas ◽  
Honghong Yang ◽  
Xinqiang Qin ◽  
Tahir Nazir

AbstractIn this paper, a stabilized numerical method with high accuracy is proposed to solve time-fractional singularly perturbed convection-diffusion equation with variable coefficients. The tailored finite point method (TFPM) is adopted to discrete equation in the spatial direction, while the time direction is discreted by the G-L approximation and the L1 approximation. It can effectively eliminate non-physical oscillation or excessive numerical dispersion caused by convection dominant. The stability of the scheme is verified by theoretical analysis. Finally, one-dimensional and two-dimensional numerical examples are presented to verify the efficiency of the method.


2008 ◽  
Vol 40 (03) ◽  
pp. 651-672 ◽  
Author(s):  
Dominic Schuhmacher ◽  
Aihua Xia

Most metrics between finite point measures currently used in the literature have the flaw that they do not treat differing total masses in an adequate manner for applications. This paper introduces a new metric d̅ 1 that combines positional differences of points under a closest match with the relative difference in total mass in a way that fixes this flaw. A comprehensive collection of theoretical results about d̅ 1 and its induced Wasserstein metric d̅ 2 for point process distributions are given, including examples of useful d̅ 1-Lipschitz continuous functions, d̅ 2 upper bounds for the Poisson process approximation, and d̅ 2 upper and lower bounds between distributions of point processes of independent and identically distributed points. Furthermore, we present a statistical test for multiple point pattern data that demonstrates the potential of d̅ 1 in applications.


Filomat ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1517-1533
Author(s):  
Xinqiang Qin ◽  
Gang Hu ◽  
Gaosheng Peng

Aiming at the nonlinear convection diffusion equation with the numerical oscillations, a numerical stability algorithm is constructed. The basic principle of the finite point algorithm is given and the computational scheme of the nonlinear convection diffusion equation is deduced. Then, the numerical simulation of the one-dimensional and two-dimensional nonlinear convection-dominated diffusion equation is carried out. The relationship between the calculation result and the support domain size, step size and time is discussed. The results show that the algorithm has the characteristics of simplicity, stability and efficiency. Compared with the traditional finite element method and finite difference method, the new algorithm can attain a higher calculation accuracy. Simultaneously, it proves that the method given in this paper is effective to solve the nonlinear flow diffusion equation and can eliminate the numerical oscillations.


2015 ◽  
Vol 245 ◽  
pp. 23-27 ◽  
Author(s):  
Yuriy Shevchenko ◽  
Vitalii Kapitan ◽  
Konstantin V. Nefedev

In the model of finite number (up to 24) of point Ising-like magnetic dipoles with magnetostatic interaction on square 2D lattice within the framework of statistical physics, with using Gibbs formalism and by the means of Metropolis algorithm the heating dependence of temperature has been evaluated. The temperature dependence of the heat capacity on finite number of point dipoles has the finite value of maximum. Together with increase of the system in size the heating peak grows and moves to the area with higher temperature. The obtained results are useful in experimental verification of statistical models, as well as in development and testing of approximate calculation methods of systems with great number of particles.


2011 ◽  
Vol 110-116 ◽  
pp. 2740-2745
Author(s):  
Kirana Kumara P. ◽  
Ashitava Ghosal

Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.


2019 ◽  
Vol 19 (4) ◽  
pp. 813-831
Author(s):  
Rezvan Salehi

AbstractIn this paper, the distributed-order time fractional sub-diffusion equation on the bounded domains is studied by using the finite-point-type meshless method. The finite point method is a point collocation based method which is truly meshless and computationally efficient. To construct the shape functions of the finite point method, the moving least square reproducing kernel approximation is employed. Two implicit discretisation of order{O(\tau)}and{O(\tau^{1+\frac{1}{2}\sigma})}are derived, respectively. Stability and{L^{2}}norm convergence of the obtained difference schemes are proved. Numerical examples are provided to confirm the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document